Identification of AlcR, an AraC-type regulator of alcaligin siderophore synthesis in Bordetella bronchiseptica and Bordetella pertussis.
نویسندگان
چکیده
A Fur titration assay was used to isolate DNA fragments bearing putative Fur binding sites (FBS) from a partial Bordetella bronchiseptica genomic DNA library. A recombinant plasmid bearing a 3.5-kb DNA insert was further studied. Successive deletions in the cloned fragment enabled us to map a putative FBS at about 2 kb from one end. Sequence analysis revealed the presence of an FBS upstream from a new gene encoding an AraC-type transcriptional regulator. The deduced protein displays similarity to PchR, an activator of pyochelin siderophore and ferripyochelin receptor synthesis in Pseudomonas aeruginosa. Homologous genes in Bordetella pertussis and Bordetella parapertussis were PCR amplified, and sequence comparisons indicated a very high conservation in the three species. The B. pertussis and B. bronchiseptica chromosomal genes were inactivated by allelic exchange. Under low-iron growth conditions, the mutants did not secrete the alcaligin siderophore and lacked AlcC, an alcaligin biosynthetic enzyme. Alcaligin production was restored after transformation with a plasmid bearing the wild-type gene. On the basis of its role in regulation of alcaligin biosynthesis, the new gene was designated alcR. Additional sequence determination showed that alcR is located about 2 kb downstream from the alcABC operon and is transcribed in the same orientation. Two tightly linked open reading frames, alcD and alcE, were identified between alcC and alcR. AlcE is a putative iron-sulfur protein; AlcD shows no homology with the proteins in the database. The production of major virulence factors and colonization in the mouse respiratory infection model are AlcR independent.
منابع مشابه
Identification and characterization of alcR, a gene encoding an AraC-like regulator of alcaligin siderophore biosynthesis and transport in Bordetella pertussis and Bordetella bronchiseptica.
A Bordetella bronchiseptica iron transport mutant was isolated following an enrichment procedure based on streptonigrin resistance. The mutant displayed a growth defect on iron-restricted medium containing ferric alcaligin as the sole iron source. In addition to the apparent inability to acquire iron from the siderophore, the mutant failed to produce alcaligin as well as two known iron-regulate...
متن کاملBordetella interspecies allelic variation in AlcR inducer requirements: identification of a critical determinant of AlcR inducer responsiveness and construction of an alcR(Con) mutant allele.
Previous studies established the critical roles of AlcR and alcaligin inducer in positive regulation of alcaligin siderophore biosynthesis and transport genes in Bordetella pertussis and Bordetella bronchiseptica. Transcriptional analyses using plasmid-borne alcR genes of B. pertussis UT25 and B. bronchiseptica B013N to complement the alcR defect of B. bronchiseptica strain BRM13 (Delta alcR1 a...
متن کاملEssential role of the iron-regulated outer membrane receptor FauA in alcaligin siderophore-mediated iron uptake in Bordetella species.
Phenotypic analysis using heterologous host systems localized putative Bordetella pertussis ferric alcaligin transport genes and Fur-binding sequences to a 3.8-kb genetic region downstream from the alcR regulator gene. Nucleotide sequencing identified a TonB-dependent receptor family homolog gene, fauA, predicted to encode a polypeptide with high amino acid sequence similarity with known bacter...
متن کاملTranscriptional activation of Bordetella alcaligin siderophore genes requires the AlcR regulator with alcaligin as inducer.
Genetic and biochemical studies have established that Fur and iron mediate repression of Bordetella alcaligin siderophore system (alc) genes under iron-replete nutritional growth conditions. In this study, transcriptional analyses using Bordetella chromosomal alc-lacZ operon fusions determined that maximal alc gene transcriptional activity under iron starvation stress conditions is dependent on...
متن کاملBordetella AlcS transporter functions in alcaligin siderophore export and is central to inducer sensing in positive regulation of alcaligin system gene expression.
Bordetella pertussis and Bordetella bronchiseptica, which are respiratory mucosal pathogens of mammals, produce and utilize the siderophore alcaligin to acquire iron in response to iron starvation. A predicted permease of the major facilitator superfamily class of membrane efflux pumps, AlcS (synonyms, OrfX and Bcr), was reported to be encoded within the alcaligin gene cluster. In this study, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 180 4 شماره
صفحات -
تاریخ انتشار 1998